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Pancreatic cancer (PC) is a lethal malignancy cancer, and its mortality rates have been increasing worldwide. Diagnosis of this
cancer is complicated, as it does not often present symptoms, and most patients present an irremediable tumor having a 5-year
survival rate after diagnosis. Regarding treatment, many concerns have also been raised, as most tumors are found at advanced
stages. At present, anticancer compounds-rich foods have been utilized to control PC. Among such bioactive molecules,
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flavonoid compounds have shown excellent anticancer abilities, such as quercetin, which has been used as an adjunctive or
alternative drug to PC treatment by inhibitory or stimulatory biological mechanisms including autophagy, apoptosis, cell
growth reduction or inhibition, EMT, oxidative stress, and enhancing sensitivity to chemotherapy agents. The recognition that
this natural product has beneficial effects on cancer treatment has boosted the researchers’ interest towards more extensive
studies to use herbal medicine for anticancer purposes. In addition, due to the expensive cost and high rate of side effects of
anticancer drugs, attempts have been made to use quercetin but also other flavonoids for preventing and treating PC. Based on
related studies, it has been found that the quercetin compound has significant effect on cancerous cell lines as well as animal
models. Therefore, it can be used as a supplementary drug to treat a variety of cancers, particularly pancreatic cancer. This
review is aimed at discussing the therapeutic effects of quercetin by targeting the molecular signaling pathway and identifying
antigrowth, cell proliferation, antioxidative stress, EMT, induction of apoptotic, and autophagic features.

1. Introduction

Pancreatic cancer (PC) is an increasingly common cancer of
the gastrointestinal tract (GIT), with survival rates less than
5% at 5 years after diagnosis, and about 50% of all patients
die over 6 months of diagnosis. According to estimations
in the United States, PC will become the second most com-
mon cause of cancer death in the next twenty to thirty years.
However, patients’ prognosis with localized and respectable
tumors remains poor with only 20% survival rate after sur-
gery [1]. In addition, in line with GLOBOCAN 2018 assess-
ments, PC which accounts for approximately 459,000 new
cases and 432,000 deaths is the seventh leading cause of
global cancer death [2]. In Europe, it is assumed that PC will
quickly exceed breast cancer as the third cause of cancer
death after colorectal and lung cancers [3].

PC is characterized as a tumor of the exocrine pancreas
and ductal adenocarcinoma; however, a minor subset of
patients also represents neuroendocrine tumors. Indeed,
pancreatic intraepithelial neoplasia or precursor lesions are
the operative factors in the acquisition of genetic shifts
which trigger discernible pancreatic ductal adenocarcinoma
(PDA) [4]. Unfortunately, PC symptoms do not begin up
to the advanced stages of cancer and are usually vague,
including nausea, vomiting, severe abdominal pain, and
weight loss. Besides, previous studies revealed that type 2
diabetes, family history, obesity, and tobacco usage are the
major risk factors for PC [1–5]. Therefore, studies are
headed for PC prevention. A broad range of recent studies
have explored the anticancer features of phytochemicals
and have indicated that polyphenols, flavonoids, and fla-
vones can be occupied against diverse types of cancers [6].
Flavonoids are secondary metabolites of plants with phar-
macological activities (Table 1). Hence, fruits or vegetables,
such as cocoa and coffee, are valuable sources of flavonoids
[7, 8]. Based on chemical structure, oxidation degree, and
unsaturation of linking chain, flavonoids are categorized
into 6 main classes: isoflavonoids, flavones, flavanols, flava-
nones, flavonols, and anthocyanidins [9]. Quercetin and
kaempferol are some of the most frequently found flavonols
[10]. Quercetin (C15H10O7) is called by IUPAC (International
Union of Pure and Applied Chemistry) as follows: 3,3,4,5,7-
pentahydroxyflavone and 2-(3,4-dihydroxyphenyl)-3,5,7-tri-
hydroxychromen-4-one [11]. It has been documented that
quercetin offers antifungal, antioxidant, cytotoxic, hepatopro-
tective, and anticancer activities [12]. Specifically, both querce-
tin and its derivatives can prevent cancer-related diseases by

regulating cellular signaling pathways. However, the anti-
inflammatory and antioxidant properties of quercetin are the
main factors for its activity as cell cycle inhibitors, and the
apoptosis-inducing effect of quercetin has a key anticancer
role [13, 14]. Noteworthy, quercetin is a general phytochemi-
cal in the regular dietary program of people worldwide since
it can be widely found in daily foods, like tea, coffee, different
vegetables, nuts, and fruits [15]. Quercetin and its derivatives
pose biological inhibitory effects on the progression of the can-
cerous cell cycle; therefore, the metabolic pathways of querce-
tin are deemed as a significant factor in the plants’ adaptive
reaction. A number of recent studies have focused on the quer-
cetin content of fruits and vegetables for its therapeutic pur-
poses [16–19]. Additionally, as mentioned by Harwood et al.
[20], commercially accessible quercetin can be consumed
orally at a dose of 1 g daily, which is absorbed up to 60% and
safe enough. In this sense, this review aims to discuss the anti-
cancer properties of quercetin against PC, considering its low
cost in comparison to synthetic drugs. In addition, the latest
trends on quercetin features and their molecular mechanisms
in cancer therapy are also summarized. Therefore, different
research studies have analyzed the probable mechanisms
through which quercetin exerts its antitumor effects against
pancreatic cancer cells. Since there is not any review article
on this subject based on our searches, we aimed to discuss
the therapeutic effects of quercetin against pancreatic cancer
cells for the first time.

2. Pancreatic Cancer (PC)

Currently with an average 5-year survival rate, PC is esti-
mated to be the second cause of cancer-related deaths by
2030 in the United States [21–23]. The possibility of devel-
oping PC is about 1.5% in both genders [23], despite it
mainly occurs in elderly, between 70 and 80 years, mostly
in unlocalized and incurable forms [21, 24]. PC often
remains undetectable until it transforms into a metastatic
tumor [25]. While the etiology of PC has not been
completely understood, several genetic and environmental
risk factors are known to increase the risk, including smok-
ing, obesity, diets rich in animal fat, cystic fibrosis, and
genetic predispositions [26]. According to Huang et al.
[27], the highest incidence and mortality of PC are in coun-
tries with very high human development index or age-
standardized rates (ASRs) or the countries with a higher
prevalence of alcohol drinking, smoking, hypertension,
physical inactivity, obesity, and high cholesterol. The highest
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incidence rates of PC were reported in Western Europe
(ASR, 8.3), North America (ASR, 7.6), and Central and East-
ern Europe (ASR, 7.5). The incidence of PC has men to
women ratio of 1.4 : 1.0. More detailed information about
the PC incidence and mortality based on the region and
sex are presented in the main reference [27].

An earlier diagnosis would be very helpful in the success-
ful treatment of this malignancy, despite the scarce presence
of symptoms among individuals. Regarding treatment, sur-
gery, chemotherapy, and radiotherapy are the most common
therapeutic strategies applied for PC treatment. Actually, the
standard course of treatment is surgery following adjuvant
therapy; however, the recurrence of 70-80% of resected
tumors ultimately occurs. Patients who are eligible for surgical
resection comprise merely almost 10-15% of all patients with
advanced PC. With the majority of patients being diagnosed
at later stages, chemotherapy remains as only treatment
option for PC. 5-Flourouracil (5-FU) and gemcitabine
(GMC), alone or in combination with radiation, are the stan-
dard chemotherapy regimen for PC’s treatment, even though
the response rate is usually below 31%. GMC has some advan-
tages over 5-FU, such as the ability to relieve most disease’s
symptoms and having a modest survival advantage; however,
it could not extend the average survival rate much beyond 6
months, like other chemotherapeutics [28, 29]. Hence, with
the limited success of current standard therapies, the search
for new and effective treatment strategies and agents is
urgently needed.

3. Naturally Occurring Phytochemicals for
Anticancer Purposes

Various observational and prospective studies have revealed
an indirect association between fruit and vegetable con-
sumption with the occurrence of some cancers and the great

potential of natural compounds to change the natural his-
tory of carcinogenesis [30–32]. Plants with some bioactive
nonnutrient compounds isolated, characterized, and identi-
fied as phytochemicals have been ever more searched for
their ability to treat different diseases, especially cancer
[33–41]. It seems that natural products still hold out the best
options to find effective novel components in the treatment
of human diseases [42]. In addition, the development of sci-
entific technologies such as genome mining, genetic engi-
neering, and using of nanoparticles as carriers [43]
improve the discovery of new drugs in cancer therapy [44].
The word ‘phytochemical’ refers to plant (phyto in Greek)
chemicals. Many of these phytochemicals could regulate a
wide range of cellular signaling pathways which are involved
in oxidative stress, growth, proliferation, differentiation, and
death [37, 45–48]. For example, they exhibit antioxidant
properties by affecting Nrf2-Keap1 pathway, where upon
activation, Nrf2 translocate into the nucleus, binds to ARE
(antioxidant response elements) or EpREs (electrophile
response elements) and increases the expression of ATP-
dependent drug efflux pumps, detoxification enzymes, and
endogenous antioxidants [49]. These events eventually lead
to the protection of cells against ROS (reactive oxygen spe-
cies) [50, 51]. Phytochemicals could also suppress tumor
progression and induce apoptosis in pre-neoplastic or neo-
plastic cells by affecting cell cycle, JAK-STAT, NF-κB, and
cytochrome C signaling pathways [52, 53]. One of the phy-
tochemicals is garcinol, a Polyisoprenylated Benzophenone
that can inhibit STAT-3 pathway by suppressing the
upstream kinases (c-Src, JAK1, and JAK2) in HNSCC cells.
Garcinol also inhibits NF-κB activation by the suppression
of TGF-β and inhibitor of IκB kinase (IKK) activation in
HNSCC cells [54]. In addition, Li et al. showed that garcinol
prevents the growth of human HNSCC xenograft tumors in
male athymic nu/nu mice [54]. It can be concluded that

Table 1: A number of pharmacological activities of quercetin reported in recent studies.

Dose Model Administration Activity Ref.

25 μM MCF-7 and MDA-MB-231 Direct treatment Apoptosis induction and anticancer effect [129]

20 μM
Human umbilical vein endothelial

cells (HUVECs)
Direct treatment Autophagy and promoted cell survival [130]

5.7 μM
(DPPH assay)

Erythrocytes Direct treatment ROS and free radical scavenging activity [131]

100mg kg-1
C57BL/6J mice on ethanol-containing

Lieber De Carli liquid diets
Gavage

Suppressed autophagic flux, decreased
liver injury by ethanol consumption

[132]

100mg kg-1 Streptococcus suis infected mice Subcutaneous Antimicrobial effect against Streptococcus suis [133]

100mg kg-1 Chronic ethanol feeding C57BL/6J mice Oral
Decreased fat accumulation in liver

(ethanol induced)
[134]

30mg kg-1 STZ-induced diabetic rats Intraperitoneal
Higher insulin levels, improved dyslipidemia,

reduced serum blood glucose levels,
decreased oxidative stress

[135]

100-200mg kg-1 STZ-induced diabetic Wistar rats Oral
Controlled insulin resistance, reduced blood sugar,

pancreatic cells protection
[136]

5-20mg kg-1 STZ-induced diabetic rats Oral
Controlled body weight and blood glucose,

performance in the Morris water test
[137]

40mg kg-1
STZ-induced diabetic mice

in the Morris water maze task
Oral

Enhanced the time spent by mice in the target
quadrant in the Morris water maze task

[138]
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garcinol has potential antitumor effects in head and neck
carcinoma through the suppression of multiple proinflam-
matory cascades. Activator protein 1 (AP-1) as a key tran-
scription factor in the control of several cellular processes
is involved in inflammatory disorders and cancer. Several
natural compounds such as kaempferide, resveratrol, api-
genin, isorhamnetin, citrifolinoside A, viscolin, curcumin,
and quercetin can modulate AP-1-associated signaling path-
ways for cancer prevention and intervention [55].

Among the plethora of biologically active phytochemicals
with anticancer potential, they are chemically categorized into
phenolics, carotenoids, phytosterols, organosulfur compounds,
and nitrogen-containing compounds [56, 57]. Phenolics are
structurally characterized with one (phenolic acids) or more
(polyphenols) aromatic rings with one or more hydroxyl
(OH) groups [58]. Phenolic compounds can be divided into fla-
vonoids and nonflavonoids [59]. Flavonoids, including glyco-
sides, aglycone, and methylated derivatives, comprise half of
phenolic compounds [60]; flavonoids are subgrouped into fla-
vones, flavanones, flavanonols, flavanols, flavonols, isoflavones,
chalcones, and anthocyanidins [61, 62]. Nonflavonoids also
have several subgroups which include stilbenes, phenolic acids,
lignans, coumarins, and tannins [63] (Figure 1).

4. Flavonoids and Anticancer Effects: Key Focus
on Quercetin

Belonging to the class of polyphenolic flavonoid compounds
and the subclass of flavonols, quercetin is ubiquitous in daily

foods, including various plants, vegetables, nuts, seeds, fruits,
tea, and red wine [64, 65]. However, fruits and plants are being
studied as promising sources of quercetin [17, 66–68]. Querce-
tin comprises the characteristic structure of flavonoids (back-
bone C6-C3-C6) in which two benzene rings are bonded by a
3-carbone heterocyclic pyrone [69, 70]. Quercetin has two
antioxidant pharmacophores in this structure, which allow
to act as a free radical scavenging agent and join to transitional
metal ions [69]. The ideal arrangement of the catechol and the
OH group at C3, the position in quercetin structure, also adds
to its free radical scavenging ability [69, 71]. The replacement
of its various OH groups grants quercetin different biochemi-
cal and pharmacological functions [72]. It has been estimated
that the average daily intake of quercetin could be about 25mg
[20]. The bioavailability of quercetin relies on its metabolic
form in the food [73]. Quercetin may be found as free or agly-
cone state and conjugated forms, in which it interacts with
several molecules, including lipids, carbohydrates, alcohols,
and sulfate groups to form its derivatives, including prenylated
quercetin, quercetin ethers, quercetin glycoside, and quercetin
sulfate [72]. In plants, the form of quercetin is quercetin gluco-
sides (quercetin-glucose conjugates). Quercetin glucosides
undergo hydrolysis to form quercetin aglycone following the
absorption in the apical membrane of the enterocytes. Then,
enterocytic transferases metabolize quercetin aglycone to the
glucuronidated, sulfonylated, and methylated forms [73].
These quercetin metabolites when transported to the liver
undergo other conjugation processes to generate Que-3-
glucuronide and quercetin-3′-sulfate [73–75]. The peak
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Figure 1: Classified phytochemicals with anticancer potential and their chemical structure.
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plasma concentration of quercetin varies from 3.5 to 5.0μM
once being absorbed in the form of glucosides. However, its
peak plasma concentration is less than 0.33μM when
absorbed in the unconjugated form, showing less efficient
absorption [76].

Quercetin has numerous benefits on human health,
including anticancer, antioxidant, antidiabetic, antiulcer,
anti-inflammatory, antiviral, antiallergic, antihypertension
and anti-infection, cardioprotective, gastroprotective, and
immune-modulatory effects [69, 77]. With the specific
impact on tumor cells and without any impact on normal
and nontransformed ones, quercetin has fascinated many
researchers to investigate its potential as an adjuvant to sup-
press oxidative stress, proliferation, and metastasis [78]. Sev-
eral studies showed the inhibitory impacts of quercetin
against pancreatic, colorectal, prostate, lung, ovarian, naso-
pharyngeal, breast, and kidney cancers [79–85]. A number
of recent clinical studies have scrutinized quercetin’s effect
on PC. In this regard, Liu et al. [86] have explored the anti-
cancer effects and mechanistic actions of quercetin in GMC-
resistant cancer cells. In this survey, BxPC-3, PANC-1 and
HepG2, and Huh-7 cell lines were studied. Proliferation
assays presented that quercetin had cytotoxic effects on
GMC-resistant cell lines including HepG2 and PANC-1,
and flow cytometric analysis specified a noteworthy proa-
poptotic effect on these cell lines. GMC treatment, along
with quercetin, caused increased anticancer effects compared
with GMC alone, and quercetin led to S phase arrest in resis-
tant cell lines. Hoca et al. [5] investigated the effect of quer-
cetin and resveratrol on epithelial-mesenchymal transition
(EMT) of CD133+ and CD133− pancreatic cancer cells.
CD133+ cells were obtained from the PANC-1 cells by the
MiniMACS system. CD133+ and CD133- PANC-1 cells were
treated with different concentrations of resveratrol and quer-
cetin. Immunocytochemistry tests using antibodies such as
TNF-α, ACTA-2, N-cadherin, IL-1β, and vimentin were
applied for assessing the anticancer and antimetastatic
properties of resveratrol and quercetin. Results revealed
that the immunostaining intensity of CD133+ cells was
stronger than that of CD133- cells. ACTA-2, N-cadherin,
and IL-1β immunoreactivities were significantly decreased,
whereas vimentin and TNF-α immunoreactivities increased
in quercetin treated CD133+ cells. In addition, quercetin
was more effective than resveratrol in inhibiting metastasis.
Guo et al. [87] have studied the therapeutic potential of
quercetin in targeting sonic hedgehog (SHH) signaling of
PDA. The effects of quercetin on the apoptosis, migration,
and invasion of pancreatic cancer cells (PCCs) were evalu-
ated in PDA xenograft mouse models. According to the
results, quercetin inhibited the PCC proliferation by down-
regulating c-Myc expression and suppressed the EMT by
reducing TGF-β1 level, which inhibited the PCC migration
and invasion. Quercetin treatment reduced the PDA
growth and metastasis in nude mouse models by decreas-
ing SHH activity. Additionally, SHH activated TGF-
β1/Smad2/3 signaling and stimulated EMT by inducing
the expression of Snail1and Zeb2 that instigated a partial
reversal of quercetin-mediated inhibition of PCC migration
and invasion.

4.1. Molecular Mechanisms Underlying Quercetin-Mediated
Effects in Cancer

4.1.1. Effect in Autophagy and Apoptosis Induction. Accord-
ing to Pang et al. [88], quercetin can affect CD36 and
decrease the death rate of PC by facilitating the uptake of
fatty acids, improving the cell adhesion, stimulating immune
response, and regulating thrombospondin-1. Furthermore,
previous trends indicated that quercetin has proapoptotic
activity in suppressing Bcl-2 protein and in upregulating
the p53 gene; however, inhibition of Bcl-2 transcription
could prevent the tumors development [12]. In an illustra-
tive study, Serri et al. [89], have investigated the effect of
GMC with biodegradable nanoparticles (NPs) loaded within
quercetin on PC cell lines. The manufactured NPs decorated
with hyaluronic acid (HA) and loaded with quercetin and
GMC presented a developed cytotoxicity on PANC-1 and
Mia-PaCa-2 cell lines when compared with the bare drugs
and the NPs nondecorated with HA on the surface. The
results indicated that, the NPs exposing HA may enhance
the anti-inflammatory activity of Que, which led to a reduc-
tion of interleukin (IL) expression levels in cell lines and pre-
liminarily increased with lipopolysaccharides (LPS). In
another survey, Lan et al. [90] showed that quercetin accel-
erates cell death and chemosensitivity of human PC cells.
The results showed that silencing of a receptor for advanced
glycation end products (RAGE) by RAGE-specific siRNA
intensified the autophagy and apoptosis through suppressing
PI3K/AKT/mTOR axis in MIA Paca-2 and GMC-resistant
cells (MIA Paca-2 GMCR cells). Moreover, quercetin reduced
RAGE expression and facilitated the apoptosis, autophagy,
and chemosensitivity to GMC in MIA Paca-2 GMCR cells,
which suggests that further cytotoxicity has been achieved
by the addition of quercetin in treatment with GMC. Yu
et al. [91] showed that quercetin initiated inhibitory activi-
ties against PATU-8988 and PANC-1 cells and reduced the
release of matrix metalloproteinase (MMP). In this study,
they used STAT-3 and IL-6 activation to scrutinize the
effects of quercetin treatment on cell malignancy. The
MMP secretion and epithelial mesenchymal transition
(EMT) stimulated the STAT-3 signaling pathway, while
quercetin reversed IL-6-induced EMT and invasion. As
main findings, this study showed that quercetin is an effec-
tive agent in PC treatment as it blocks the STAT-3 signaling
pathway, leading to the suppression of EMT and metastasis.
In addition, Nwaeburu et al. [92] have explored the effect of
quercetin on miRNA expression in PC cells and concluded
that quercetin treatment induced the expression of miR-
200b-3p in AsPC1 cell lines, which has a crucial role in the
irregular division of PDA cells by notch signaling regulation
(Figure 2).

4.1.2. Effect in Proliferation and Cell Growth. Inhibition of
PC cell proliferation could signify a distinct mechanism of
anticancer effects of quercetin (Table 2). In this way, Pham
et al. [93] studied the effect of quercetin on dysregulated epi-
genetic readers, including bromodomain and extraterminal
domain (BET) proteins, in in vitro and xenograft models
of PC. According to the results, after treatment with BET
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Figure 2: Schematic representation of the molecular structure of quercetin composition and its role in physiological conditions through
signaling pathways. The flavonoid quercetin through inhibitory and stimulatory mechanisms performs functions such as inducing
autophagy and apoptosis and reducing or inhibiting cell growth and proliferation, EMT, oxidative stress, and sensitivity to chemotherapy
drugs.

Table 2: Anticancer effects of quercetin against PC.

Dose In vitro/in vivo Cell line Effective mechanism Ref.

100 μM and
75mg kg-1

In vivo and in vitro PANC-1 and Patu8988

EMT suppression by reducing TGF-β1 level, inhibition
of growth, invasion, and migration of cells, apoptosis of

cancer cells by antagonizing TGF-β/Smad and
SHH signaling pathways

[87]

20 μM In vitro Mia-PaCa-2 and PANC-1
Reduced IL-6 and IL-8 expressions and enhanced

cytotoxicity against Mia-PaCa-2 and PANC-1 cell lines
[89]

100 μM In vitro PANC-1
Reduced immunoreactivities such as ACTA-2, IL-1β,
and N-cadherin, increased TNF-α and vimentin,

prevention of EMT
[139]

20 μM and
40mg kg-1

In vivo and in vitro PDAC
Improved effects of BET inhibitors at suppressing tumor

development and reduced hnRNPA1 in vivo
[93]

50-200 μM In vitro
MIA Paca-2, BxPC-3,

AsPC-1, HPAC
and PANC-1

Quercetin showed a RAGE silencing like effect that
attenuate RAGE expression to accelerate apoptosis, autophagy,

and chemosensitivity of MIA Paca-2 GEMR cells
[90]

20-80 μM In vitro PANC-1 and PATU-8988
Quercetin reversed IL-6-induced EMT by the stimulation

of the STAT3 signaling pathway and prevented the migration
[91]

50 μM In vivo AsPC-1 and PANC-1
Upregulation of miR-200b-3p that promoted the Notch

signaling pathway of daughter cells to turn into symmetric
[92]

50 μM In vitro
AsPC-1, CRL-4023,

and PANC-1

Notch inhibition by quercetin-induced let-7c and marker
progression, upregulation of Numbl, and

tumor development reduction
[94]

100 nM In vitro CFPAC-1 and SNU-213
Suppressed TGF-β- and VEGF-A-induced migratory

activity induced at low dosages in CFPAC-1,
but not in bFGF-activated SNU-213 cells

[140]
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inhibitors and quercetin the proliferation and sphere-
forming ability of cancer cells was reduced, and apoptosis
stimulated. In addition, quercetin diminished the nuclear
protein hnRNPA1 which control mRNA translation and
export of antiapoptotic proteins, in vivo and increased the
BET inhibitors effects at suppressing cells proliferation and
tumor growth. In another study, Nwaeburu et al. [94]
explored the quercetin influence on PC cells proliferation
by the activation of Notch-inhibitor Numbl as let-7c target
gene. In vivo xenotransplantation of PDA cell and following
IV injection of let-7c provoked a noteworthy reduction of
tumor mass in the fertilized chick egg model. Immunohisto-
chemistry analysis demonstrated that let-7c upregulated the
Numbl and reserved Notch and progression markers. The
findings illustrate that Que-induced let-7c declines cancer
cell divisions and tumor growth.

4.1.3. Effect in Oxidative Stress. Redox homeostasis is very
important for cell function and ROS have an essential role
in cell signaling. However, the disturbance in the antioxidant
system could lead to excessive intracellular ROS levels, such
as hydroxy free radicals and H2O2 [95]. The excessive intra-
cellular levels of ROS result in oxidative damages to many
biological macromolecules which includes lipids, proteins,
and genetic material, giving rise to pathological conditions,
like cancer, inflammation, atherosclerosis, angiogenesis, as
well as aging [96–100]. Therefore, helping cells to keep redox
homeostasis is of great value, which can be provided by con-
suming natural nutritional components, such as Que.

With the numerous OH groups and conjugated π orbitals
allowing it to donate hydrogen or electrons, and thus scavenge
superoxide anion (•O2−) and H2O2. Quercetin is regarded as
outstanding free-radical scavenging antioxidant [101]. Querce-
tin could generate the semi-quinone radical and H2O2 by reac-
tion with •O2−, while also decreases H2O2 levels in the presence
of peroxidases and keeps cells safe against H2O2 damages [64].
The semi-quinone is one of potentially harmful reactive oxida-
tion products and undertakes a second oxidation reaction with
Que, producing additional quinone (Que-Quinone; QQ) [64].
QQ is held culprit for lipid peroxidation as well as protein
and DNA damages with higher affinity to react with lipids, pro-
teins, and DNA [64, 102]. QQ with high reactivity towards
thiols could arylate protein thiols, impairing several vital
enzymes; however, it generates relatively stable glutathione
(GSH)-oxidized adducts including 8-glutathionyl-quercetin
(8-GSQ), 6-glutathionyl-quercetin (6-GSQ), and 2′-glutathio-
nyl-quercetin (2′-GSQ) when reduced GSH exists [103, 104];
this reaction is reversible and glutathionyl-quercetin adducts
could be constantly disassociated into QQ and GSH [105].
Consequently, high GSH concentrations within cells, oxidized
quercetin forms GSQ by reaction with GSH, neutralizing the
toxicity of QQ. Yet, oxidized quercetin reacts with protein
thiols while lower concentrations of GSH exist within cells,
showing the prooxidant effect of quercetin [105, 106]. There-
fore, the GSH concentration within cells determines whether
the antioxidant effect of quercetin could prevail over its pro-
oxidant effect. Indeed, high levels of GSH limit quercetin
cytotoxicity and permit it to show its antioxidant activity
but not prooxidant activity [107]. Besides, it has been shown

that quercetin induces GSH synthesis [108, 109]. Moreover,
quercetin also exerts antioxidant activity by activating the
nuclear factor erythroid 2-related factor 2 (Nrf2) as well as
its downstream targets, which are vital for maintaining cell
redox hemostasis [110, 111].

4.1.4. Effect in Epithelial-to-Mesenchymal Transition (EMT).
A physiological process, epithelial-to-mesenchymal transi-
tion (EMT), has an key function in mammalian embryonic
development and cell and tissue balance; however, it has also
an important role in tumorigenesis and tumor progression
[112]. During EMT, epithelial cells undergo some changes
including losing cellular polarity, disabling junctions
between cells and adhesive connections, and obtaining pen-
etration and migration capabilities [113, 114]. EMT can be
monitored by protein markers, including E- and N-cad-
herin, Snail and Vimentin [114, 115]. Furthermore, MMPs
closely related to EMT are recently introduced as EMT
markers and as a predisposing factor for it, providing an
appropriate condition for tumor infiltration and metastasis
by degrading the extracellular matrix (ECM) and basement
membrane (BM) nearby the tumor exterior [116, 117]. The
impact of quercetin on EMT in PC cells have been investi-
gated by a few studies. In one study, it has been shown that
quercetin treatment could decrease EMT and MMP secre-
tion in PATU-8688 PC cell line [91]. Quercetin reduced
mRNA and protein expressions level of N-cadherin, Slug,
Vimentin Zeb1, Twist, and Snail, indicating the potential
of quercetin to reverse the EMT process; however, it
increased E-cadherin expression [91]. Quercetin also inhib-
ited MMP2 and MMP7 protein expressions [91]. Besides,
it has been indicated that quercetin exerted its inhibitory
impacts on EMT, invasion, and metastasis in PC cells
through suppressing the STAT-3 signaling pathway [91].
Another study showed that quercetin repressed EMT by
suppressing SHH and TGF-β/Smad signaling pathways,
involved in promoting EMT by the induction of Zeb2 and
Snail1 expressions [87]. Quercetin downregulated Vim
(encoding vimentin) and Acta2 (encoding α-SMA) gene
expressions, and upregulated Cdh1 (encoding E-cadherin)
gene expression in PANC-1 and Patu8988 cells; upon quer-
cetin treatment, the protein levels of type I collagen, N-cad-
herin, α-SMA and vimentin were reduced,; however, the
protein level of E-cadherin was increased in cells [87]. Quer-
cetin decreased TGF-β1 expression and that of EMT-TFs
(EMT-inducing transcription factors) Snail1 and Zeb2 [87].
EMT-TFs (Snail1 and Zeb2) are the key downstream target
of TGF-β1/Smad2/3 signaling pathway suppressing E-
cadherin expression [118, 119]. Furthermore, the nuclear
translocation and phosphorylation of Smad2 and Smad3
were also suppressed by quercetin [87]. It has been reported
that upon activation by TGF-β1 and forming heteromeric
complexes with Smad4, Smad2 and Smad3 translocate to
the nucleus and induce EMT-TFs’ expression [120]. It has
also been indicated that quercetin may inhibit EMT in PC
stem cells by suppressing the expression of N-cadherin [5].
Quercetin downregulated Twist2 expression, a protein
involved in EMT, in PC stem cells [121], suggesting EMT
inhibition by quercetin [122].
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4.1.5. Effect in Chemo-Sensitivity. By the improved effective-
ness in combination with other dietary agents, quercetin has
been investigated as a promising adjuvant to increase the
effectiveness of numerous chemotherapeutics [122, 123].
Lan, Chen, Kuo, Lu and Yen [90] showed that quercetin
may decline cell viability, promote autophagy, and increase
apoptosis by suppressing receptors for advanced glycation
end products (RAGE) in GMC-resistant PC cells, with a
greater impact once accompanied with GMC. The results
revealed that RAGE silencing promoted GMC-induced cyto-
toxicity in MIA Paca-2 and MIA Paca-2 GEMR cell via the
PI3K/AKT/mTOR axis [90]. As RAGE silencing, quercetin
reduced the expression of RAGE, which led to cell cycle
arrest, apoptosis, autophagy, and promoted GEM efficacy
in MIA Paca-2 GEMR cells [90], proposing quercetin quer-
cetin as enhancer of chemotherapy efficacy of drugs against
PC. In another study, quercetin promoted tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL)-induced
apoptosis in TRAIL-resistant PC cells [124], and decreased
cellular FLICE-like inhibitory protein (cFLIP) expression,
while activated c-Jun N-terminal kinase (JNK), leading to
the proteasomal degradation of cFLIP and eventually mak-
ing PC cells more susceptible to TRAIL-induced apoptosis
[124]. It has also been reported that quercetin decreased
the viability of PC cell lines including PANC-1, MiaPaCa-
2, and BxPC-3 [125, 126]. Once combined with other che-
motherapeutics, such as GMC or 5-FU, quercetin could
affect chemotherapy efficacy depending on cell lines applied,
either to suppress proliferation of or have no impact on can-
cer cells [125, 126]. Borska et al. [127] indicated that querce-
tin induced apoptosis and suppressed cell proliferation in
both daunorubicin sensitive EPP85-181P and resistant
EPP85-181RDB PC cell lines. Quercetin had synergistic
effects with daunorubicin in both sensitive and resistant cells
[127]. They also showed that quercetin treatment could
decrease P-glycoprotein expression [128].

5. Conclusion

Food consumption combined with therapeutic agents has
been considered a key for the successful treatment of several
diseases, including cancer. Conventional therapies like natu-
ral components besides other therapeutic methods due to
their lower cost and side effects have been increasingly con-
sidered by researchers. Specifically, quercetin exerts an anti-
cancer effect against PC cancer cells by mediating apoptosis,
but recent studies have also indicated that quercetin affects
various signal transduction pathways to reduce cancer pro-
gression. Quercetin suppresses the expression of N-cadherin,
MMP-9, STAT-3 signaling pathways and potentially inhibits
EMT, invasion, and metastasis. Quercetin enhances gemcit-
abine chemosensitivity in pancreatic cancer cells through the
inhibitory effect on RAGE expression. Meanwhile, it has
wide accessibility, efficacy and low toxicity comparing with
other studied compounds, make it an appealing agent in
cancer treatment. More recently, quercetin has been intro-
duced and applied as a promising drug in the treatment of
various cancers alone or in combination with other chemo-
therapeutic agents. Future well-designed clinical studies are

needed to help the scientists to evaluate the safety and
potential of quercetin against PC.
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